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Abstract: Two-dimensional space embeddings such as Multi-Dimensional Scaling (MDS) are a popu-
lar means to gain insight into high-dimensional data relationships. However, in all but the simplest
cases these embeddings suffer from significant distortions, which can lead to misinterpretations
of the high-dimensional data. These distortions occur both at the global inter-cluster and the local
intra-cluster levels. The former leads to misinterpretation of the distances between the various
N-D cluster populations, while the latter hampers the appreciation of their individual shapes and
composition, which we call cluster appearance. The distortion of cluster appearance incurred in
the 2-D embedding is unavoidable since such low-dimensional embeddings always come at the
loss of some of the intra-cluster variance. In this paper, we propose techniques to overcome these
limitations by conveying the N-D cluster appearance via a framework inspired by illustrative design.
Here we make use of Scagnostics which offers a set of intuitive feature descriptors to describe the
appearance of 2-D scatterplots. We extend the Scagnostics analysis to N-D and then devise and test
via crowd-sourced user studies a set of parameterizable texture patterns that map to the various
Scagnostics descriptors. Finally, we embed these N-D Scagnostics-informed texture patterns into
shapes derived from N-D statistics to yield what we call Cluster Appearance Glyphs. We demonstrate
our framework with a dataset acquired to analyze program execution times in file systems.

Keywords: high-dimensional data; glyphs; visual analytics

1. Introduction

The late Jim Cray [1] described data-driven science as the evolution from hypotheses
to patterns, and the most interesting and useful data patterns involve many more than just
two variables. They are High-dimensional (N-D), as opposed to bivariate. Unfortunately,
High-dimensional patterns are fragile structures that do not always survive the mapping
from N-D space to the 2-D (or even 3-D) space in which the human visual system operates
and can visualize them. Let us demonstrate this by way of a simple example, using a 10-D
dataset composed of a set of colleges with salient attributes such as US-News score, tuition,
athletics, housing quality, etc. Figure 1 shows a High-dimensional scatterplot (a biplot) of
this college dataset. Focusing on dimension 10, tuition, in the upper-right portion of the
figure, we observe that, while USC-Viterbi is an expensive school, it ends up located to the
left of the cheaper Texas A&M. This is a well-known phenomenon because biplots use the
two most dominant Principal Component (PCA) vectors as a basis and project both data
and dimension vectors into it. However, as the PCA bar chart shows, there are in fact three
significant PCA vectors, and some less significant ones. The visualization only coveys the
variance of the two major PCA vectors; the remaining unexplained variance leads to this
distortion. These types of distortions occur with any projective N-D to 2-D mapping, linear
or non-linear, in all but the most trivial cases. They affect individual point-pair relations as
well as overall cluster appearance, such as density, composition, shape, and organization.

Thus, since we cannot observe these patterns directly in 2-D, we require the help of
an “agent” that ventures into N-D space, observes the patterns there and then visually
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explains them to us in our native 2-D space. For this to work, we first need a sufficiently
expressive vocabulary that can capture the appearance of the patterns to be conveyed. An
attractive framework for this purpose is Scagnostics, first informally proposed by John and
Paul Tukey [2]. More recently, Wilkinson et al. [3] used graph-theoretic measures to define
specific Scagnostics metrics such as density, skewed, clumpy, striated, stringy, straight, and
others to gauge cluster appearance. These metrics operate on a bounded continuous scale
which can be optionally binned into discrete levels.

Figure 1. High-dimensional scatterplot, college dataset.

Wilkinson et al. employed three graphical representations: minimum spanning tree
(MST), alpha hulls and convex hulls, but they only used them for 2-D analyses. Since then
Fu [4] extended Scagnostics to 3-D and Dang et al. [5] used 2-D Scagnostics to encode
High-dimensional time-series. We have opted to only analyze rotation- and dimension-
invariant properties, as only those can be reliably ported from N-D to 2-D. The Scagnostics
appearance metrics fitting this focus are those that gauge cluster composition, such as
skewed, clumpy, and striated. All of these require MST analysis, which, in contrast to
alpha and convex hull algorithms, is relatively easy to extend from 2 to D to N-D. Finally,
to assess cluster shape while retaining dimension-number invariance, we evaluate a set of
statistical measures—variance, skew and kurtosis—along each dimension in N-D space.

Now when it comes to the visualization of these metrics it is important to realize
that the mapping of a metric tuple to a 2-D scatterplot is not bijective; there are many 2-D
scatterplots which, when analyzed, will evaluate to the same tuple configuration. This is
mainly because the metrics do not fully characterize the scatterplot’s appearance, i.e., the
set of metrics is not complete. A solution is illustrative stylization, i.e., design a dedicated
rendition of the property to be conveyed, one that elicits the same semantic response in
the viewer than the real-world property, the scatterplot. An important added benefit to
this stylization scheme is that the viewer can then also easily distinguish a real projective
N-D/2-D mapping from an analyzed one.

Scatterplots are essentially texture patterns, and so we have devised three sets of
illustrative texture patterns, each of which is dedicated to one of the three Scagnostics
measures we have adopted, and each of which is parameterized by feature strength.
Mapping this texture into the 2-D contour derived from the statistical N-D shape analysis
then yields what we call a Cluster Appearance Glyph.

While our method can be used within cluster analysis, it does not provide any cluster-
ing capabilities [6,7] on its own. Rather, it expects a cluster membership tag for each data
point, either obtained via prior cluster analysis or classification. Our method then analyzes
each such cluster and determines its corresponding cluster appearance glyph. Next it
computes a suitable 2-D layout by a cascaded mapping of all data points—using Linear
Discriminant Analysis (LDA) and then Multi Dimensional Scaling (MDS). Then it anchors
each glyph at the center of its corresponding 2-D-mapped cluster. Here the appearance
textures of the glyphs are able to compensate for LDA’s loss of cluster detail. Finally, since
the overall layout might lead to overlapping glyphs that undermine readability, we perform
a final optimization step that removes these overlaps.

Our research makes the following contributions:



Information 2022, 13, 3 3 of 22

• We introduce a set of measures gleaned from Scagnostics that can holistically charac-
terize the point distribution of data clusters in N-D space.

• For this purpose we extend a subset of Scagnostics measures from 2-D to N-D, specifi-
cally, the striated, clumpy, and skew metrics.

• We introduce the concept of Cluster Appearance Glyph, a family of illustrative textures
that can graphically encode the three scagnostics measures assessed in N-D.

• We introduce a set of graphical enhancements for our cluster appearance glyphs,
designed to encode additional statistics assessed from the N-D clusters.

• We introduce a cascaded LDA-MDS N-to-2D mapping strategy, devised to preserve
global cluster relations while keeping sufficient space for glyph placement.

• We validate and refine our various design choices via a series of user studies.

Our paper is structured as follows. Section 2 presents related work. Sections 3 and 4
discuss the 2-D mapping and theoretical underpinnings. Section 5 covers appearance
aspects of this work. Section 6 describes our cluster appearance glyphs. Sections 7–10
discuss outcomes of user studies and present results. Section 11 ends with conclusions.

2. Related Work

Research on the visualization of high-dimensional (N-D) data has largely used tradi-
tional visual variables in the spirit of Bertin [8]. One may distinguish these methods by the
strategy they use to overcome the problems that arise from the limited dimensions avail-
able for display. Pixel based techniques [9] create an N × N matrix of scatterplots called
SPLOMs [10] in which each coordinate pairing is displayed. Linkable scatterplots [11]
have been designed to improve the data comprehensibility of SPLOMs. On the other hand,
Multi-Dimensional Scaling (MDS) [12], Linear Discriminant Analysis (LDA) [13], neural
embeddings [14] and others have been employed to “flatten” the N-D space into 2-D, while
all suffer from distortions in this flattening process, LDA is particularly noteworthy since
it seeks to maximize the inter-cluster distances, spacing the clusters well apart, but in the
process it shrinks the intra-cluster distances. This transforms all projected clusters to similar
small blobs of points, although they might have very different appearances in N-D. We add
this appearance back in via our glyphs.

More recent embedding techniques are t-SNE [15] and UMAP [16]. Both group points
into the embedding according to probabilistic neighborhood relations in N-D, while neither
is designed to preserve shape and appearance of local structures, UMAP excels over t-SNE
for its ability to better maintain global structure. However, it often leads to a decomposition
of clusters into smaller groups, while UMAP can also be run in supervised mode and so be
incentivized to better observe classified clusters, it may still produce some stray noise. We
chose LDA over t-SNE and UMAP since it is explicitly designed to linearly maximize the
separation between the class-tagged clusters. So this fits our goal perfectly. However, LDA
also has shortcomings. First, as mentioned above, LDA does not preserve local structure.
However, we can tolerate this since we provide the local structure with our appearance
glyphs. Second, the dimensionality of LDA’s embedding is determined by the number
of classes. We chose MDS (over t-SNE and UMAP) to reduce the dimensionality to 2 as
the remaining dimensionality is low and will not require the complex and time intensive
mechanism of the more advanced algorithms.

Star Coordinates [17] and RadViz [18] flatten the axes of the N-D space into 2-D where
an N-D point reduces to a 2-D point whose coordinates are given by the average coordinate
value in the multi-spoke radial coordinate system. These systems, however, fall victim to
similar distortion problems than biplots. Conversely, the method of Parallel Coordinates
(PC) [19] reduces an N-D data point to a piece-wise linear curve, while the emerging
ensemble of lines can reveal data patterns, it often occurs that a pattern of interest is fully
or partially occluded by other data patterns and the recognition of patterns is also sensitive
to axes ordering.

Since Scagnostics represents a scatterplot as a vector of 9 appearance-based numerical
scores, a collection of scatterplots forms a 9-D dataset. This can facilitate an effective
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summarization of a possibly massive number of bivariate scatterplots, while the original
paper used a SPLOM to visualize this dataset, Dang and Wilkinson have used a similarity-
based 2-D embedding [20]. Jo and Seo [21] found that the Scagnostics measures, while
human-interpretable, are not predictive in how humans perceive the similarity of two
scatterplots. They propose the low-dimensional latent vector of a trained auto-encoder
neural network as a better “disentangled” representation in which each vector component
expresses one perceptual dimension, while we could use this type of analysis as well, it
would require a large dataset of N-D patterns which would be expensive to train a neural
network with. For this reason, we prefer the computational Scagnostics approach.

Glyphs have a long history in data visualization and several surveys [22–24] are avail-
able that provide an overview. According to Ward [22] they are “graphical entities that
convey one or more data values via attributes such as shape, size, color, and position”.
They can be fairly simple or consist of intricate designs that capture information on several
attributes of a High-dimensional dataset. They are typically placed independently through-
out the canvas to indicate local data relationships. Our glyph uses texture and optionally
encodes additional information into the boundary.

3. N-D to 2-D Data Mapping

Our aim is to achieve a 2-D embedding that can preserve the global (inter-cluster)
distances. In addition, we would also like the clusters to be well spaced apart to create
a sufficient empty space for our glyphs. On the other hand, we are less interested in
preserving the intra-cluster distances because we will use our glyph representation to
convey these visually.

3.1. LDA

We find that LDA is especially well posed for this purpose. It projects the data from
N-D space into an optimal lower dimensional space by maximizing the ratio of between-
cluster variance and within-cluster variance. This guarantees maximal separability of
clusters. Following the notation of Choo et al. [25], we define a dimension-reducing linear
transformation GT as:

GT : x ∈ Rm×1 → z = GT : x ∈ Rl×1 (1)

Assuming m is the dimensionality of the original data space, GT maps an m-dimensional
data vector x in Rm to a vector z in l-dimensional space Rl (m > l). We shall call this reduced
dimensional space intermediate space, as typically l > 2. Let us assume we have k classified
clusters. We follow the general LDA strategy, the approach of Choo et al. then maximizes
trace(GTSbG) and minimizes trace(GTSwG) in the reduced dimensional space, where Sb
and Sw is the between-cluster data scatter matrix and the within-cluster data scatter matrix,
respectively. Hence, this yields the desired embedding where the k clusters are optimally
spaced apart, at the expense of compressing the data points inside the clusters. The two
optimizations are simultaneously satisfied and can be approximated in a single form as:

Jb/w(G) = max trace((GTSwG)−1(GTSbG)) (2)

The solution, GLDA, is a matrix in which the columns are the leading generalized
eigen-vectors u of the generalized eigenvalue problem:

Sbu = λSwu (3)

The final step is to project the m-dimensional data vectors onto the l-dimensional
space. This space has dimensionality l = k− 1 and so does not produce the desired 2-D
layout as yet. Choo et al. offer two strategies for this. Their first method, called Rank-2
LDA [25], chooses the two dimensions with the largest leading generalized eigenvalues,
while the second method [13] allows users to select the two dimensions via an interactive
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framework that uses a parallel coordinated display with bivariate scatterplots for each axis
pair. We shall refer to this second more general method as Selected-2 LDA.

3.2. Layout Problems with Rank-2 and Selected-2 LDA

Figure 2a shows a scatterplot obtained by Rank-2 LDA with an artificial Gaussian
dataset, consisting of six well-separated clusters in 30-D space that are composed of 200,
200, 300, 360, 450 and 150 points, respectively. Figure 2a shows that the clustering is
well preserved by Rank-2 LDA. However, three clusters—magenta, blue and green—are
overplotted. Figure 2b visualizes all possible sets for Selected-2 LDA using a SPLOM. We
observe that if we use the fourth dimension (scatterplots within the red box), the green
cluster is no longer mixed, but the blue and magenta clusters still are. On the other hand,
if we use the fifth dimension (blue box), the blue and magenta clusters are separated, but
they both mix with the green cluster. Hence, the Selected-2 LDA method [13] can indeed
reduce the overplotting problem but cannot totally eliminate it.

(a) Rank-2 LDA (b) SPLOM (c) MDS-LDA

Figure 2. Artificial dataset with 6 Gaussian clusters originally in 30-D space gives rise to a 5-D LDA
embedding. (a) Rank-2 LDA. Three clusters—the green, blue and magenta clusters—are overplotted.
(b) 5-D SPLOM. The top scatterplot is Rank-2 LDA (a). None of the scatterplot projections can
successfully isolate all clusters, (c) MDS-LDA. We observe that all clusters are now well separated.

3.3. MDS-LDA

To improve the overplotting problem, we propose the MDS-LDA approach. It is
motivated by the fact that even though MDS can be problematic when the number of
dimensions is high, it does quite well when it is not. LDA, on the other hand, does a fine
job to go from N-D to (k − 1)-D but simple 2-D projection techniques are unable to go
further down to 2-D. So, our proposed approach is to combine the best of both worlds and
introduce what we call MDS-LDA. Instead of selecting two eigen-dimensions, MDS-LDA
performs MDS on the points in (k − 1)-D intermediate space. As Figure 2c shows, this
avoids the overplotting problem and renders all clusters well separated.

3.4. Limits of Embedding N-D Cluster Structures in 2-D

As argued in the introduction, cluster patterns (intra-cluster distances) are typically
not well-preserved when mapping them from N-D to 2-D. It is easy to demonstrate that
the N-D patterns are not preserved in the 2-D projection by inspecting the MSTs generated
using both N-D and 2-D distance. Figure 3 shows the three clusters in the MDS-LDA
plot with a 2-D distance-based MST on the top and an N-D distance-based MST in the
bottom. In all three clusters, the two MSTs look dissimilar. This dissimilarity demonstrates
that distortion is introduced by the dimension reduction and causes a change in the N-D
patterns when projected to 2-D.

To overcome this limitation, we analyze meaningful N-D cluster structures from the
N-D space and visualize them. In following sections, we describe how we achieve it.
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(a) Green (b) Blue (c) Magenta

Figure 3. Scatterplots obtained by MDS-LDA with 2-D distance-based MST (top row) and N-D
distance-based MST (bottom row).

4. Appearance Analysis and Classification

In this section, we explained the meaningful N-D cluster structures we found and how
we measure it.

4.1. Scagnostics Metrics

The human visual system works best with 2-D or 3-D plots. Thus, scatterplot matrices
(SPLOMs) are very effective for the visualization of N-D data. However, as the number
of variables p increases, a SPLOM loses its effectiveness due to information overload. It
is simply impractical for a user to search for patterns in p(p− 1)/2 plots (cells) for larger
values of p.

To overcome this problem, John and Paul Tukey [2] proposed a wide variety of
Scagnostics indices to judge the usefulness of a scatterplot display and so reduced the O(p2)
visual task to an O(k2) one, where k is a small number of distribution-related measures of
2-D scatter points (Scagnostics indices). Wilkinson et al. [3] use graph-theoretic metrics to
calculate the Scagnostics measures. The method extended the scope of the original idea
and also improved the computational efficiency by using graph-theoretic metrics based on
Delaunay triangulation. They describe three geometric graphs—convex hull, alpha hull
and minimum spanning tree (MST)—on which the Scagnostics metrics are computed. We
only use skew, clumpy and striated as our per-cluster descriptive Scagnostics. The values of
all three metrics are within the range 0 (low) to 1 (high). They are described as follows.

Skew: A point distribution is skewed when the distribution of edge lengths in the MST
is not uniform. The skew metric is computed based on the ratio of quantiles of the edge
lengths as:

Cskew = (q90 − q50)/(q90 − q10) (4)

where q90, q50, and q10 are the 90th, 50th and 10th percentile of MST edge lengths, respectively.
Clumpy: This measure looks for the existence of sub-clusters in a cluster. It is based

on the RUNT statistic [26] where the runt size of a dendrogram node is the smaller of
the number of leaves of each of the two subtrees joined at that node [3]. A runt size (rj)
is associated with each edge (ej) in the MST. The metric is high for clusters with small
between-point distances inside clusters relative to distances of connecting-edges between
clusters. It is computed:

Cclumpy = max
j

[
1−max

k

[
length(ek)

]
/length(ej)

]
(5)

where j indexes edges in the MST and k indexes edges in each runt set derived from an
edge indexed by j.

Striated: It gauges if there are points that lie on parallel lines by investigating the
angles between connecting MST edges. As the value goes to 0, the cluster points form an
increasingly fuzzy distribution. It is computed by summing angles over all adjacent edges:
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Cstriated =
1∣∣V(2)
∣∣ ∑

v∈V(2)

∣∣∣cos θe(v,a)e(v,b)

∣∣∣ (6)

where V(2) ⊆ V be the set of all vertices of degree 2 in V.
Figure 4 shows an example for each metric; we chose high-level values for good

illustration. We note that there are a great many scatter plots that can represent a particular
level of each metric since the mapping of a metric tuple to a 2-D scatterplot is not bijective,
as explained in Section 1.

Figure 4. 2-D example scatterplots for each metric we have encoded. For each of them we chose a
high value level for better illustration of their real-world graphical appearance.

4.2. Extending Graph-Theoretic Scagnostics to N-D

Wilkinson et al. [3] defined their metrics only for 2-D. Here we describe an extension
to N-D, for skew, clumpy and striated. This can let us gauge the appearance of each cluster
in N-D space and use it to overcome the embedding limitation. This is promising since
these measures extract the density/distribution patterns succinctly, and since all of the
three metrics are rotation and dimension-invariant they can be reliably ported from N-D
to 2-D. All three metrics are also based on the MST which scales well to N-D, although
the Euclidean distance must now be calculated in N-D space which is more expensive.
Further, while striated can be extended to parallel hyperplanes and hyperlines, we consider
only parallel lines due to computational efficiency and interestingness of the pattern. Since
the three metrics are all based on the MST, the formulas for the 2-D case can be used
without change.

4.3. Demonstrating the Embedding Limits with Scagnostics Metrics

With these Scagnostics measures, we can also demonstrate the embedding limita-
tion, while we have not tested all embedding algorithms in existence, we selected two
representative ones—one linear and one non-linear. For our study we synthesized a 30-D
dataset, consisting of 6 well-separated Gaussian clusters composed of 200, 200, 300, 360,
450 and 150 points, respectively. For each of the 6 clusters we computed all three N-D
Scagnostics metrics. We distinguish between three levels: low (0–0.3), mid (0.3–0.7), and
high (0.7–1). We chose the low-mid-high bracketing since these levels appear frequently in
many real-word settings.

Figure 5 shows our results for three of these six clusters—colored green, blue and
magenta. We synthesized the green cluster (Figure 5a) to have 10 sub-clusters. The parallel
coordinates display (PCD) in Figure 5b visualizes the centers of these 10 sub-clusters,
and the panels below each axis pair show the respective bivariate scatterplots. We can
observe that the sub-clusters appear moderately well separated in N-D space and are also
fairly well distinguished in the scatterplots. However, no sub-cluster is observed in the
zoomed MDS-LDA plot (Figure 5a), and this is confirmed by the very low value of 0.1345
of the associated 2-D clumpy metric. The N-D clumpy metric on the other hand evaluates
to 0.6240 (mid). Evidently the clumpy pattern in N-D space is not preserved well in the
2-D mapping.

The blue cluster in Figure 5c was synthesized to have 9 parallel lines in N-D. To make
these N-D parallel lines easy to recognize, only three of the 30 dimensions in the blue
cluster are used for creating the pattern. The 9 parallel lines can be seen in both the PCD
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and the 2-D scatterplots below (Figure 5d). The N-D striated metric has a value of 0.8967
(high). However, the distribution of the blue cluster in the zoomed MDS-LDA 2-D plot
(Figure 5c) exhibits the striated pattern only in a fuzzy manner—the distinct parallel lines
have vanished—and accordingly its value is 0.6387 (mid). We conclude that the striated
pattern in N-D space is also not preserved well in 2-D space.

(a) (b)

(c) (d) (e) (f)

Figure 5. Three clusters of the Gaussian dataset. (a) MDS-LDA of the green cluster with N-D
and 2-D clumpy values. The green cluster is composed of 10 sub-clusters. (b) The green cluster
in parallel coordinates display (PCD). The 10 sub-cluster centers shown in different colors. The
clusters themselves are well distinguishable in the bivariate scatterplots below. (c) MDS-LDA of
the blue cluster with N-D and 2-D striated values. It has 9 sub-clusters which run along parallel
lines. (d) Partial PCD of ranges of the sub-clusters shown in different colors and the first 3 zoomed
scatterplots of adjacent dimensions. (e) MDS-LDA of the magenta cluster with N-D and 2-D skew
values. (f) Distribution of edge lengths in the 2-D MST and N-D MST. The vertical axis indicates the
ratio of edge length to the longest edge length.

Finally, the magenta cluster (Figure 5e) has a skewed point distribution in N-D space.
The amount of skew can be gauged in a plot of the distribution of the ratio of edge lengths
to max edge length in the MST (see Figure 5f). The steeper the graph’s slope, the more
skewed and non-uniform the distribution is. Clearly, the N-D graph is steeper than the
2-D one. Accordingly, the N-D skew metric evaluates to 0.8497 (high), while this metric
evaluates to only 0.5833 (mid) for the zoomed 2-D plot (Figure 5e) where we only recognize
a rather moderate level of skew. Thus, evidently, the N-D skew pattern is also not preserved
well in the 2-D embedding.

5. Textures

In the previous section we found that the projection from N-D to 2-D fairly could
not preserve the N-D Scagnostics metrics in the 2-D. In order to visualize this appearance
information better, we propose to synthesize a texture pattern specifically designed to
convey the overall nature of the distributional cluster appearance. One of our initial
motivations in this research was that when a sufficient degree of artistic abstraction was
applied, a viewer would be reminded of the patterns a scatterplot can reveal, but focus
on the kinds of patterns the texture patterns could actually convey. The viewer would not
mistake it for an actual scatterplot and so not try to ’over-analyze’ it. All we essentially
aim for is to convey a ’feel’ for the nature of the underlying data. We believe that this is
justified (1) by the concept of Scagnostics itself, and (2) by the fact that data are typically
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collected at some level of uncertainty, and so the abstraction we produce will not lead to
misinformation (if done well).

5.1. Crowd-Sourced Texture Design

Our goal is hence to generate a texture for each combination (at some granularity) of
our chosen Scagnostics metrics—skew, clumpy, striated—which can subsequently form the
basis for artistic abstraction. However, the equations given to compute these metrics are
not invertible, i.e., we cannot reverse-engineer the metrics for the purpose of generating a
texture that evaluates to a desired (skew, clumpy, striated) tuple. Exhaustive search is also
infeasible; assuming a texture of size 642 this would require 24,096 images to be evaluated,
with just two states (white/black) per pixel.

To narrow the search space we developed a procedural approach that decomposes the
texture generation process into three sequential stages, addressing each parameter in turn,
with some overlapping influence. This has the additional advantage that the generated
textures are more intuitive in their mapping to the metrics, that is, users who view these
textures can mentally decompose the three metrics and draw independent inferences. This
is important since in our experiments we have come across many textures that fit the
metrics well but were not intuitive at all. Through a series of user studies we found a
suitable set of textures that convey the skew, clumpy, and striated metrics in an effective and
reliable manner.

As mentioned, we bin the metric values into three levels: low, mid, and high. As part
of pre-processing, the system procedurally generates a set of 27 repeating textures: the
three Scagnostics metrics with three levels each (low, medium, high). In each texture, a
set of points is abstracted as a triad of blobs which communicate all three metrics. The
clumpy value is communicated by varying the space between the blobs in a triad, in which
a small inter-blob distance indicates high clumpiness and greater distances indicate lower
clumpiness (Figure 6a). The skew value is shown as one, two, or three concentric rings
that represent, respectively, low, medium and high skew (Figure 6b). The striated value
is visualized by stretching the blobs, where a circular blob indicates a low striated value
and an elongated blob indicates a high striated value (Figure 6c). Figure 6d,e show two
examples of synthesized textures that combine these three metrics.

5.2. Effectiveness Texture

We conducted both formative and summative user studies during this research to
determine the most effective collection of textures that can produce understandable, unam-
biguous illustrations so that the features highlighted in the N-D space are easily compre-
hensible to the user. This goal raises few obvious questions: (1) Does our method bring any
advantage over using traditional scatter plots? (2) If it does, does the set of our textures
provide an acceptable level of understandability? To find answers to questions along these
lines and justify our texture generation framework, we performed several user evaluations
through the Amazon Mechanical Turk platform. No specific knowledge of visualization,
data science, machine learning and the like was required to take up a job and participate in
the study. All participants were Mechanical Turk Master Workers and none of the results
needed to be discarded due to poor or inconsistent outcomes.

In the following we present each individual study: the questions, the results and
the findings.

User study 1: Does texture-based illustration increase understandability over
scatterplots?

We tested each of the Scagnostics metrics (skew, clumpy, striated) independently. For
a given metric (say, clumpy) each subject first went through a qualification phase where the
subject was presented with a short introduction that explained the concept of the metric
and was then given an idea of how this metric could be represented by a texture. In the
study, we had 60 subjects and each subject was presented with six questions, three of
two types each. In the first type, the test subject chose between two randomly generated
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2-D scatter plots, and in the second type the subject chose between two textures. In both
types of questions, the subject was asked questions such as “Which plot/texture is more
clumpy?” The subject had option of picking either image or choosing “Not Sure”. This
testing procedure was carried out for all three properties and for different sets of textures
generated. Since we have statistics about the accuracy of each subject for both scatter-plots
and textures, we performed paired, one-tailed t-tests, where the null hypothesis in all tests
was “Introduction of textures provides no significant improvement in user perception of
the metric”. The results of the first user study are given in Table 1. We see that, generally
speaking, textures can provide a statistically significant improvement of understandability
over scatter plots when tested independently.

(a) Clumpiness

(b) Skewness

(c) Striatedness

(d) (e)

Figure 6. Textures; low, mid, and high level (from left to right) ; other metrics are similar except
for the displayed metric in the left label; (a–c) sample textures for conveying Scagnostics metrics.
(d,e) two synthesized textures—mid clumpy, skew and striated (d), high clumpy and skew, and low
striated (e).

Table 1. Results from user study 1. Entries are read as RIGHT/TOTAL (% Correct).

Plot Texture Comment

Clumpy 164/180 (91%) 173/180 (96%) Better than scatterplots with 95% significance
Skew 101/108 (91%) 102/108 (96%) As good as scatterplots with 95% significance
Striated 134/180 (91%) 169/180 (96%) Better than scatterplots with 95% significance

User study 2: Does the presence of one property have an impact on the understand-
ability of the other?

In the second major study we tested the textures for cross interference. Here again,
we tested for all three metrics and had 180 subjects for each metric. For a given metric we
first trained a subject with a short qualification test that involved only the metric under
consideration. In the study, a subject was presented with pairs of textured illustration
where one metric level varied and other metrics might or might not be changed. The subject
was instructed to complete a task like “Select the clumpier texture”. Table 2 shows the
study’s summary data where the percentage indicates the accuracy rate of the test subjects
in picking the correct texture. We can infer that the presence of other metrics has some
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impact on the understandability of a given metric, but within a tolerable limit. Thus, we
conclude that cross-effects are minimal and do not notably impact understandability.

Table 2. Results from user study 2. Entries are read as RIGHT/TOTAL (% Correct).

Changing Clumpy Changing Skew Changing Striated Others Constant

Clumpy X 232/255 (90.98%) 341/365 (93.42%) 113/117 (96.58%)
Skew 196/225 (87.11%) X 213/246 (86.59) 130/150 (86.67)
Striated 207/228 (90.79%) 231/247 (93.52%) X 135/150 (90.00%)

6. Cluster Appearance Glyphs

In this section, we describe how we represent each cluster by a glyph. The glyph
boundary is derived from statistical analysis in N-D and its interior is filled with the
calculated appearance texture. Each glyph is placed at the center of the MDS-LDA projected
cluster, and its boundary is modified by three metrics derived in N-D for each dimension:
standard deviation (SD), kurtosis, and skew.

Boundary shape: If a cluster has similar SDs across all dimensions, the N-D shape
of the cluster can be considered homogeneous, otherwise it is heterogeneous. Figure 7
illustrates the design process of the glyph boundary shape. Figure 7a shows 10 boundary
points of the glyph to visualize a 10-D cluster. Each point corresponds to a dimension in
clockwise order. It has an inner circle to secure an area for the appearance texture. The
radius of the inner circle (in black) represents a global minimum SD along all dimensions
of all clusters. Figure 7b shows how the boundary points are computed. The length of
a red line represents the magnitude of the SD in the corresponding dimension and is
normalized by a global maximum SD along all dimensions of all clusters. The boundary is
created by connecting the boundary points. Since this list of points often yields a rather
noisy boundary we smooth the set of points by applying an interpolating cubic spline
that loses no information (Figure 7c). As seen, the SDs have variation—some of them are
close to the minimum SD but some of them are much larger than it. However, due to the
similar magnitude of SDs in the 2nd–5th and 6th–8th dimensions, it is difficult to notice
the variation of SDs, i.e., the heterogeneous shape. We found that the heterogeneous shape
is hard to recognize when there are consecutive dimensions with similar SDs. Therefore,
intermediate points (red points in Figure 7d) are inserted between the boundary points
to minimize the influence of such consecutive dimensions. These intermediate points are
computed by a local minimum SD along the SDs of all dimensions of the cluster. Figure 7e
shows that the boundary including the intermediate points visualizes the heterogeneous
shape much better. Figure 7f,g show two different cases by setting different lengths for
the global maximum SD, but the same length for the global minimum SD. The boundary
is generated with a shorter length for the global maximum SD in Figure 7g. Our system
allows the circle radius and the length for the global maximum and minimum SD be
controlled interactively.

(a) (b) (c) (d) (e) (f) (g)

Figure 7. Glyph generation of a 10-D cluster. (a) Boundary points representing each dimension.
(b) Visualization of variances of dimensions (red lines from the center). (c) Boundary generated by
points in (a). (d) Insertion of intermediate points with length of local minimum standard deviation
(SD) from the center between every pair of the initial boundary points. (e,f) Boundary generated by
points in (d)—it visualizes the heterogeneous shape much better. (g) Boundary generated by smaller
maximum radius.
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Boundary line appearance: We vary the intensity of the boundary line to visualize
the 1D statistics of the dimensions in the N-D space. Two metrics—kurtosis and skew—are
considered. This skew metric is different from the skew metric used for texture generation,
and to avoid confusion we shall refer to it as asymmetry. A stronger intensity indicates
a higher value of the metric. The asymmetry metric is a measure of asymmetry of the
probability distribution of a random variable. The value can be positive, negative or 0. A
positive value means a longer right-hand side tail of the distribution, where most of the
values lie to the left side of the mean. A negative value means the opposite. When the
metric is 0 then the values are relatively distributed evenly on both sides of the mean. It is
given by the following equation:

Dasymmetry = E

[(
X− µ

σ

)3
]

=
µ3

σ3 (7)

where µ3 is the third moment about the mean µ, σ is the standard deviation. In our
visualization, the sign of the value is not considered. The variation of the asymmetry metric
along the dimensions is shown in Figure 8a. Even if several dimensions have a similar SD,
their distribution can be diverse like Figure 8a. Next, the kurtosis metric is a measure of
the shape of the probability distribution. The metric estimates whether the distribution is
peaked or flat relative to a normal distribution. A high kurtosis has a distinct peak around
the mean, declines rapidly, and has heavy tails. A low kurtosis indicates a flat distribution
near the mean rather than a sharp peak, Thus, a uniform distribution is the extreme case of
low kurtosis. The value is computed as follows:

Dkurtosis = E

[(
X− µ

σ

)4
]
− 3 =

µ4

σ4 − 3 (8)

where µ4 is the fourth moment about the mean µ. The minus 3 can be defined as a cor-
rection to make the kurtosis value of the normal distribution 0. Then the intensity of the
boundary when varied by the kurtosis metric visualizes how sharp peaked and heavy
tailed a dimension’s distribution is. Figure 8b shows this kurtosis-based boundary. This
visualization allows a comparison between different dimensions for both metrics.

(a) (b) (c) (d)

Figure 8. Asymmetry/Kurtosis visualization. (a,b) Boundary visualizing the variation of the asym-
metry/kurtosis metric along the dimensions. (c) Boundary (a) with color emphasis. (d) Boundary
(a) with texture.

Boundary area appearance: With the boundary visualization, an inner shadow is cho-
sen to identify clusters by its color and represent overall distribution. Since the inner circle
is generated by the global minimum SD and the intermediate points are generated by the
local minimum SD, the thickness of the shadow indicates the difference between the global
and local minimum SD. If the cluster has a thick shadow, its minimum SD is larger than
the global minimum SD. To secure shadow space for clusters with no differences between
them, we define a minimum thickness. Figure 8c shows the shadow along with boundaries.

Appearance Texture placement: Figure 8d shows how the synthesized Scagnostics
texture (here mid clumpy, mid skew and low striated) is mapped to the cluster glyph. The
texture is shown only in the inner circle area. If we were to extend the texture outwards,
the blobs near the boundary could make the boundary look darker and interfere with
the boundary color. As explained in Section 5, in the texture the clumpy metric can be
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estimated by distances between blobs of a triad. Thus, at least one triad of blobs should be
shown in the glyph by placing them in the middle of the inner circle. The details inside the
texture can be zoomed in by modifying the texture size.

7. Overlap Avoidance

The MDS-LDA layout does not inherently prevent overlap of glyphs. However,
prevention of overlap is crucial because the glyph visualizes cluster details using all of its
parts. So after layout we run an overlap removal algorithm originally devised by Gansner
and Hu [27] which we have modified somewhat as detailed further below. The algorithm
utilizes a proximity stress model that seeks to preserve the initial layout as much as possible.
The algorithm sets up a rigid “scaffolding” structure in order to maintain relative positions
of points while they move around. This scaffolding structure can be created by Delaunay
triangulation (DT) and is used to determine if there is any overlap between nodes connected
by DT edges. To ensure smooth convergence to a solution, the algorithm operates in an
iterative fashion and only adjusts nodes by small increments.

We modified the algorithm by Gansner and Hu in the following way. Their original
scheme uses a bounding box for a node to check for overlaps. If we used a bounding box,
however, it may detect “fake” overlaps which actually do not exist because our primitives
are largely circular. So, by substituting the half width wi and half height hi of a node (cluster)
with the radius ri of the glyph, i.e., the local maximum radius, we can alleviate the problem.
Furthermore, since a glyph is generated by different radii according to the SDs, using the
maximum radius may still give rise to fake overlaps. We thus provide a slider interface by
which users can control how much partial overlap is allowed, called the permitted overlap
ratio p. If p = 0.1, the radius ri can be substituted with ri ∗ 0.9 when computing the overlap
factor. By allowing for interactivity in the iterative overlap algorithm, users can control
the variation of the layout. By observing the intermediate results from each iteration,
users can decide if another iteration is needed or not and so run less risk of destroying the
initial layout significantly. Figure 9 shows how our improved method reduces the overlaps
according to p.

(a) Initial Plot (b) p = 0.2 (c) p = 0.3

Figure 9. Overlap removal according to permitted overlap ratio p.

8. User Study

Our glyph design makes use of multiple visual encodings to represent the appearance
of high-dimensional clusters. Each visual encoding enables a user to gauge the level of
each measures. However, combining multiple encodings into a glyph introduces the
possibility of interference among encodings. We conducted a user study to investigate
which encodings and their combinations at different levels, if any, affect the interpretation
of a particular measure. In addition, we compare the user’s accuracy when using our glyph
design versus a baseline design.

8.1. Data and Users

The goal of this study was to test if visual encodings interfere with one another. We
generated 216 images that show all possible combinations of measures communicated with
our glyph encoding. Each image had multiple glyphs organized in a fixed layout across
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all images. Some examples of this design are shown in Figure 10a,b. The glyphs represent
different levels of the encoded measures, i.e., striatedness (low, mid, high), skewness
(low, mid, high), clumpiness (low, mid, high), boundary (present or absent), boundary
metric (shown or hidden), texture (periodic or non-periodic). The set of images generated
contained all possible combinations of the levels for each measure, and so each image
represented a unique combination of the encoded parameters.

(a) (b) (c)

Figure 10. Examples of our texture glyph used in our user study (a) periodic, (b) non-periodic, (c) the
baseline pie glyph.

In addition to these images, we generated another 108 images that show all possible
combinations of measures communicated with a baseline design (pie glyph). Some example
of this design is shown in Figure 10c. The design is based on a circular bar chart, variations
of which have been used in other glyphs as well [28,29]. Here we have three bars that
encode different levels of the Scagnostics measures, i.e., striatedness (low, mid, high),
skewness (low, mid, high), clumpiness (low, mid, high). Additionally, we use the same
boundary encoding.

We recruited a total of 45 participants for the study. We used Amazon Mechanical Turk
(AMT) to recruit the participants; all were anonymous and no data was collected about
them. We only allowed AMT Masters to participate in the study; these people are workers
who have been consistently completing tasks on AMT with a high degree of satisfaction.
The AMT participants were compensated with an hourly pay of $6.

8.2. Procedure

The study was designed such that each participant had to evaluate only one of three
Scagnostics measures—clumpiness, skewness or striatedness—using our glyph design and
the baseline design. Thus, our group of 45 participants was split into three subgroups of
15 participants, one for each measure. Participants first went through a short training phase.
They were shown examples of glyphs (our design and the baseline design) representing
different levels of the measure they would be evaluating. They were then given 2 practice
questions—one for our design and one for the baseline design. Once participants were
ready, they proceeded to the main study.

Each participant was required to complete 16 study questions—a group of 8 with
our glyph design followed by a group of 8 with the baseline design. In each question the
participant was shown a randomly selected glyph and was asked to report the level of a
measure (clumpiness, skewness or striatedness). The participant was allowed to select one
of three levels (low, mid, or high) as a response. The images for each question were selected
randomly without repetition from our pool of images. The images were shown at their
original size, i.e., they were not resized according to the browser size.

8.3. Results

We collected a total of 720 responses through the study and analyzed them in two ways.
First, we analyzed the results from the questions that employed our textures to investigate
what factors (visual encodings) affected a user’s response. Second, we compared the users’
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accuracy when using our glyph design versus the baseline design. These are discussed
as follows.

8.3.1. Glyph Encoding Effects

We analyzed data collected with ordinal regression. Ordinal regression is used to
predict an ordinal dependent variable (DV) given one or more independent variables
(IV) [30]. It can also identify interactions between IVs that can be used to predict the DV.
Interaction effects occur when the impact of one IV on an outcome is not the same at all
levels of a second explanatory IV. The results of ordinal regression tell us which of our IVs
(if any) have a statistically significant effect on our DV.

In our study, we asked users to report the level (low, mid, or high) of a Scagnostics
measure—clumpiness, skewness or striatedness—given a glyph image. We now want to
test which measure encoded in the glyph influenced the participants’ responses. Thus, we
treat the reported value (the user’s response) as our dependent variable. The other values
communicated by the glyph encodings—striatedness (low, mid, high), skewness (low, mid,
high), clumpiness (low, mid, high), boundary (present or absent), boundary metric (shown
or hidden), texture (periodic or non-periodic)—are treated as the independent variables.
Ordinal regression then informs us which independent variables (encodings) affect the
dependent variables (participants’ response).

Ordinal regression reports the effect of IVs or their combinations as a log odds ratio of
a change in the value of an IV (In the Appendix A.1, Table A1—rows 1 to 5) or interaction
of two or more IVs (In the Appendix A.1, Table A1—rows 6 onward) causing a change
in the DV. It should be noted that the odds ratios reported for interactions between IVs
must be combined with the odds ratios of the individual IVs to arrive at the final odds
ratio for the interaction effect at different levels. Arriving at a conclusion based on the
results is a rather involved process thus we show the reported log odds and the calculations
for interaction effects in Appendix A.2. We discuss the results and conclusions for each
Scagnostics measure as follows.

Clumpiness: We first investigate the responses in which users gauged the clumpi-
ness level for a given image. The ordinal regression model informed us that changes in
clumpiness levels, striatedness levels, and the texture type had a significant (p < 0.05)
impact on the user response. We also observe an interaction effect between texture type
and striatedness levels.

First the model informed us two significant effects of individual IVs. One is that
changes in clumpiness from a lower to a higher level causes the user to select a higher
clumpiness values as responses. The reported odds ratio for the behavior is 27.94 (e3.33),
i.e., when the clumpiness level increases the user is more likely to pick the higher level of
clumpiness as expected by a factor of 27.94 as compared to picking the lower clumpiness
level. The other is negative log odds ratios for the striatedness and texture encodings.
This indicates that increases in striatedness levels (odds ratio e−0.89 = 0.41) and changes in
texture type (odds ratio e−1.29 = 0.27) cause the user to pick lower values of clumpiness
as compared to picking the actual value. However, we did not observe any significant
effects caused by changing other IVs such as the value of skewness, boundary presence or
boundary type.

On further investigation, we also found a significant two-way interaction effect of an
encoding of the texture and the striatedness. As described above the interaction effects
inform us that the odds of users making mistakes when the clumpiness increases vary
for different textures and different levels of striatedness. After computing the log odds
(shown in Appendix A.2.1) for the different levels of striatedness across both texture types
we observe that as the striatedness increases, the users are likely to pick lower values of
clumpiness with the periodic textures (log odds decrease with increasing striatedness)
while they are likely to pick higher values of clumpiness with the non-periodic textures as
expected (log odds increase with increasing striatedness).
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Thus, we conclude that our design for the clumpiness in general works reasonably
well as overall users tend to pick higher levels of the clumpiness as the clumpiness increases.
Additionally, based on the interaction effect, the non-periodic texture is preferable as the
periodic texture interacted with the striatedness levels caused the users to select wrong
clumpiness levels.

Striatedness: Just as with clumpiness, not many encodings affected the user’s ability
to read striatedness levels with our glyph design. Our ordinal regression model found that
both the striatedness and clumpiness levels had an impact on the user’s response for the
striatedness. The model informed us that as the striatedness encoding value increases, the
user will likely select a higher striatedness value (odds ratio e1.21 = 3.35) as expected. How-
ever, the log odds ratio for the clumpiness encoding is negative (odds ratio e−1.57 = 0.21)
which indicates that as the clumpiness value increases, the user is likely to pick lower
striatedness values compared to the likelihood of picking the actual value.

We also found a significant two-way interaction effect between clumpiness and stri-
atedness. Upon further investigation by combining the odds ratios for their main effects
and interaction effects (shown in Appendix A.2.2) we found that at the mid and high
levels of clumpiness, as striatedness increases the users were likely to pick higher levels of
striatedness as expected. However, at the lowest level of clumpiness, users were likely to
make mistakes—i.e., picking lower levels of the striatedness when the striatedness increases
(decreasing odds ratios).

Thus, we conclude that in general the results indicate the striatedness encoding works
well except at the combination of extreme low levels of clumpiness and extreme high levels
of striatedness where the users tended to underestimate the striatedness level. This is
possibly related to the display size of the texture itself as it tends to be small and difficult to
read. We believe performance can be improved by increasing texture size.

Skewness: Unlike clumpiness and striatedness, the users’ ability to gauge skewness
levels appeared to be affected by multiple encodings. Our ordinal regression model in-
formed us that clumpiness, skewness, striatedness, and the boundary metric all had an
impact on the user responses when they were asked to report the displayed skewness level.
Our model also reported a large number of interaction effects (reported in Appendix A.1),
while we do not go into the details of each effect, the large number of effects lead us to
conclude that the skewness encoding in its current form is problematic as its readability is
influenced by multiple other factors. We believe that this is due to the fact that as clumpi-
ness and striatedness increase, the points get smaller and thinner making it difficult to read
the different gray levels that represent the skewness. In order to address this issue we chose
to redesign the skewness encoding as reported in Section 9.

8.3.2. Performance Versus the Baseline Design

To analyze the users’ performance using both designs (our design and base design
with pie chart), we used the z-score tests to compare the accuracy results. The users’
accuracy for gauging each Scagnostics measure with both designs is shown in 1st and 2nd
rows of Table 3. Here we observe that when gauging the level of clumpiness, our design
outperforms the baseline design by a significant margin of 12.5% (z = 2.1214, p = 0.034).
When evaluating striatedness, the difference of 2.5% accuracy between the two designs
is not significant (z = 0.4028, p = 0.689). However, users performed significantly worse
when evaluating the skewness (z = −3.1023, p = 0.002). This also aligns with the ordinal
regression analysis in Section 8.3.1.
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Table 3. Users’ performance.

Glyph Design Accuracy
Clummpiness Skewness Striatedness

Pie (Baseline) 64.17% 62.5% 65%
Texture 76.67% 42.5% 62.5%

Texture (Redesign) 86.42% 98.76% 83.95%

9. Redesign and Test

Based on the results of the user study, we learned that our design to represent the
skewness was problematic. The users often made mistakes when judging the skewness.
The main issue with the representation is that as the skewness increases, so does the number
of concentric rings inside blobs. Issues mainly occurred as the striatedness increased and
blobs got thinner—i.e., when making it difficult for users to distinguish the number of the
concentric rings. To address this issue, we made a minor modification to the representation
of the skewness. We offset the center of the concentric rings to the bottom, as shown
Figure 11. This allows for each concentric ring or arc to occupy a larger continuous area so
that it can make it easier for the user to distinguish the number of concentric rings and in
turn more accurately determine the level of the skewness.

(a) Low Skew (b) Mid Skew (c) High Skew

Figure 11. The redesigned texture to represent skewness.

To validate our design we re-tested the user performance using the new design.
We recruited 9 participants that were grad students at our university. Each participant
evaluated 9 images for each Scagnostics measure—Clumpiness, Skewness, and Striatedness.
This resulted in 91 trials per Scagnostics measure. We computed the participant’s accuracy
when gauging each of the three Scagnostics measures (Table 3 bottom row) and performed
a multinomial test (3 possibilities low, medium, or high having a probability of 0.33) to
compute the significance. We found that the performance of the participants with the
new design greatly improved. Participants were accurate 86.42% (p < 0.01) of the time
when gauging clumpiness, 98.76% (p < 0.01) of the time when gauging skewness, and
83.95% (p < 0.01) of the time when gauging striatedness. The results show that improved
representation for skewness greatly increases accuracy while reading that measure.

10. Case Study

We now turn to a case study. The scenario is file system analysis and we had access to
two real life datasets acquired from the systems group at our university. Each dataset has
1400 data points, and each such data point characterizes an instance of one of 28 file system
operations (such as ALLOCATE, DELETE, RELEASE, WRITE, etc.) as a 33-D vector. Each
vector is a time-series of 33 time-steps, and a value gauges the amount of consumption of
some system resource, such as memory bandwidth. Due to its domain of origin we call this
dataset the OS (Operating System) dataset.

Our collaborators collected 50 observations for each operation over time. This yields
a cluster for each such operation which we identify by a dedicated color in the plots.
The capability of our cluster appearance glyphs to highlight cluster heterogeneity and
appearance turned out to be highly useful to our collaborators. They could recognize
noteworthy operation-specific variations, anomalies and similarities within a file system
and compare them with the behavior in a different file system. Their relative locations in the
MDS-plot enabled an assessment on the similarity of different operations. The following
discussion highlights some observations.
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Figure 12a shows an OS dataset collected from file system 1 (S1) and Figure 12b shows
a second OS dataset collected from a different file system (S2). Our visualization helps the
analyst to assess (1) how the various file system operations relate to each other, and also
(2) how heterogeneous each individual operation is and where.

For example, in S1, from the (boundary) shape of their glyphs we learn that the
PERMISSION operation C1, RELEASE operation C2, ALLOC_NODE operation C3 and
TRUNCATE operation C4 have an unusually large heterogeneous distribution shape in the
33-D space. Being alerted to this fact, our collaborators would then engage into a detailed
shape comparison between the clusters to find the specific reasons for these variations.

Figure 12. Cluster visualization with two OS datasets from System #1 (S1) and System #2 (S2). (a) S1
data with kurtosis metric (b) S2 data with kurtosis metric (c) Cluster C5 and C6 in S2 with parallel
coordinates display (d) Cluster C2 in S2 with parallel coordinates display (e,f) Cluster C3 and C4 (left:
S1, right: S2). The color corresponds to the cluster. See Supplement for larger versions of the images.

Next, Figure 12c present two clusters—READPAGE operation C5 and WRITE_INODE
operation C6 in S2. When we look at the two clusters in S2, their shapes are very similar,
which means their distribution is relatively similar and this can be verified by the parallel
coordinates display provided at the top of Figure 12c. However, their textures are very
dissimilar. To analyze this in closer detail, we extract only the two clusters and re-normalize
them. The re-normalized values are shown in the two parallel coordinates displays in
the middle and bottom of Figure 12c. The parallel coordinates display of C5 shows a low
clumpy, skew and striated pattern similar to the pattern stylized in the texture. Unlike
C5, the texture of C6 shows a high clumpy, high skew and mid striated pattern. This
pattern can also be observed with the parallel coordinates display of C6. Specifically, in
the zoomed scatterplots of the dimensions within the black box, we can find distinct sub-
clusters and a skewed distribution of points. Since points within the cluster have almost
the same values in other dimensions, we can ignore them here. We note that this kind of
information might not be noticeable in the point-based distribution and even in the parallel
coordinates until rescaling them. Analysts might not suspect that the two clusters have
different patterns. However, by visualizing these patterns with the texture, they can easily
and quickly recognize the different behavior of these clusters.

Figure 12a,b visualize the kurtosis metric in the boundary. The kurtosis helps in
recognizing the one-dimensional distributions. In Figure 12d, the dimensions pointed to by
a black arrow have a lower kurtosis value than others despite the homogeneous shape, i.e.,
similar SD. In order to explain what this means, we provide a parallel coordinates display
(Figure 12d). We see that these dimensions have a relatively wide distribution. However,
it is not easy to recognize the difference even in the parallel coordinates, especially with
other clusters. However, by visualizing the kurtosis in the glyph, we can readily assess
these clusters.

Our framework generates abstract and concise visualizations of the clusters. Therefore,
comparison between two datasets can be easily made. For example, the cluster C1 has
a different shape in S2. It has a wider type of distribution in the first few dimensions in
S2. However, in S1, the last few dimensions have wider distributions. Likewise, C2 has a
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homogeneous shape in the S2, while C2 has the heterogeneous shapes in S1. From these
observations, we know that the PERMISSION operation C1 and RELEASE operation C2
have very different behaviors in the two file systems. This comparison between systems
is useful to characterize the file system. In addition, by comparing the textures of the
operations in both systems, differences in their 33-D pattern can also be observed. For
example, the ALLOC_INODE operation C3 has low-clumpy, high-skew and low-striated
pattern in S1 (see left glyph in Figure 12e). However, the same operation has different
pattern in S2 i.e., it is clumpier, less skewed and more striated (see right glyph in Figure 12e).
Likewise, the TRUNCATE operation C4 also has different patterns in both systems, i.e., it is
clumpier and more striated in S2 (see Figure 12f). From this difference regarding the clumpy
metric, analysts might suspect that the operation, in S2, has distinct sub-patterns within it
while it has very consistent behavior pattern in S1. So, by exploring both datasets side by
side, we quickly find which operations feature different patterns in the two file systems.

Our framework allows users to adjust the visualization to zoom into detail. Users can
increase the size of the texture and choose a cluster to obtain more details about the cluster
such as the real value of the Scagnostics metric, cluster id etc.

11. Conclusions

We have presented a framework for pre-classified data that addresses the fact that
low-dimensional (2-D) space embedding of high-dimensional data suffers from significant
suppression of important cluster detail. Using three perceptually and statistically motivated
metrics we have empirically shown that the mapping can alter these detail patterns by
as much as 70%. The detail lost can lead to misinterpretation of cluster information. For
example, a cluster could be composed of a number of distinct sub-cluster populations
in high-dimensional space, but this circumstance would not be apparent in an LDA- or
MDS-generated 2-D data layout. Hence, the analyst might conclude that the population of
interest is fairly distributed when it is really not. Since no 2-D-embedding algorithm exists
that is distortion-free, our approach tackles the problem from a novel angle, namely to use
techniques borrowed from illustrative design to convey these N-D data facts to the analyst.
In our framework, each data cluster is represented as an information primitive, Cluster
Appearance Glyph, which encodes several statistical cluster assessments as a texture and
a boundary.

Many of the system aspects were developed with domain experts in the loop. In future
work, we plan to combine our system with a clustering interface in which users could
check the results of the clustering directly using our cluster appearance glyphs. Further, we
would also like to address issues with scalability when the number of dimensions is large.
Data with very high-dimensions will exhaust the radial capacity of the glyphs and new
illustration techniques will have to be devised that use multi-scale representations to deal
with the challenges imposed by large numbers of clusters and high dimensionality. Finally,
the current framework uses the same criteria to categorize the level of the Scagnostics
metrics in both dimensions—N-D and 2-D. We did not conduct a formal perception study
on what people perceive as low, mid, and high. It is worth future study.
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Appendix A

Appendix A.1. Ordinal Regression Results Table

Here we report the significant (p < 0.05) results of the ordinal regression analysis.
Table A1 below shows the analysis of the results of our user study. The table lists the
dependent variables and interactions between them (rows) for each of the independent
variables (columns). It shows the computed log odds of a dependent variable affecting the
independent variable. Empty cells indicate that there was either no effect or the effect was
not significant (p > 0.05). We also include the raw results as navigable HTML files for each
measure in supplementary material.

Table A1. Users’ performance.

Encoded Measure and Interactions Measure Tested
Clummpiness Skewness Striatedness

Clumpiness 3.33 3.17 −1.57
Skewness - 3.036 -
Striatedness −0.89 5.47 1.21
Texture −1.29 - -
Boundary - - -
Boundary Metric - 4.56 -
Texture × Striatedness 1.46 - -
Boundary × Striatedness - −4.73 -
Boundary Metric × Clumpiness - −3.92 -
Boundary Metric × Skewness - −3.93 -
Boundary Metric × Striatedness - −4.07 -
Boundary Metric × Texture - 3.42 -
Clumpiness × Skewness - −1.85 -
Clumpiness × Striatedness - −3.39 1.12
Boundary × Boundary Metric × Skewness - 3.09 -
Boundary × Boundary Metric × Striatedness - 3.55 -
Texture × Boundary × Boundary Metric - −4.62 -
Boundary × Clumpiness × Striatedness - 2.26 -
Boundary Metric × Clumpiness × Skewness - 2.22 -
Boundary Metric × Clumpiness × Striatedness - 2.53 -
Clumpiness × Skewness × Striatedness - 1.35 -

Appendix A.2. Interaction Effects

In order to understand the interaction effects between two attribute levels we must
use the log odds reported for the interaction of the attributes along with the log odds for
the independent effect of those attributes to compute the log odds for every level of the
interacting attributes. We then use the computed log odds to arrive at a conclusion. These
calculations are reported as follows.

Appendix A.2.1. Clumpiness

We observed an interaction between texture and striatedness influencing the user
when he/she was determining the clumpiness level. We report the log odds for each level
of the interaction in Table A2. The interaction log odds and the equation used to compute
this table are as follows.

Interaction log odds of Texture & Striatedness:
Log Odds (Periodic × Striatedness): 0 (reference level)
Log Odds (Non-Periodic × Striatedness): 1.463
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Equation to compute log odds at different levels of Striatedness and Texture:
Log Odds Texture + (Striatedness Level × Log Odds Striatedness) + (Striatedness Level ×
Log Odds Interaction)

Table A2. Interaction log odds of Texture & Striatedness.

Texture Type Striatedness Levels
0 1 2

Periodic 0 −0.892 −2.676
Non-Periodic −1.29 −0.719 0.423

Appendix A.2.2. Striatedness

We observed an interaction between clumpiness and striatedness influencing the user
when he/she was determining the striatedness level. We report the log odds for each level
of the interaction in Table A3. The interaction log odds and the equation used to compute
this table are as follows.

Interaction Log odds of Clumpiness & Striatedness
Log Odds (Clumpiness = 0 × Striatedness): 0 (reference level)
Log Odds (Clumpiness = 1 × Striatedness): 1.12
Log Odds (Clumpiness = 2 × Striatedness): 2.24

Equation to compute log odds at different levels of Striatedness and Texture:
Log Odds Clumpiness + (Striatedness Level × Log Odds Striatedness) + (Striatedness
Level × Log Odds Interaction)

Table A3. Interaction Log odds of Clumpiness & Striatedness.

Clumpiness Levels Striatedness Levels
0 1 2

0 0 −0.892 −3.138
1 1.21 0.754 0.303
2 2.42 3.077 3.744

Appendix A.2.3. Skewness

As reported in Table A1, there are a large number of interaction effects in the case
of skewness. Additionally, the ordinal regression model fails the goodness of fit and test
of parallel lines thus indicating that it is unreliable. This leads us to believe that our
representation for skewness needed improvement as discussed in the paper.
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